Interseção de números geométricos via equação de Pell

Carregando...
Imagem de Miniatura

Data

2015-07-06

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

Our work had as main objective to study the intersection of integer sequences, denominated polygonal numbers, through Pell's equation. In this context, the solution of two equations will be treated: x2 􀀀 Dy2 = 1 and x2 􀀀 Dy2 = N, jNj > 1. For the rst one we have used results from the theory of continued fractions. For the last one, we have used the method of solution delineated in literature. Besides, propositions referring to the intersection of polygonal numbers for some particular cases are presented and demonstrated. Also, the proposition of the general case is presented and demonstrated. Finally, we have performed the solution of some of Pell's equations in order to determine the intersection of some polygonal numbers.

Descrição

Palavras-chave

Números geométricos, Frações contínuas, Equação de Pell, Interseção, Polygonal numbers, Continued fractions, Pell's equation, Intersection

Citação

SILVA, R. P. Interseção de números geométricos via equação de Pell. 2015. 98 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Universidade Federal de Goiás, Catalão, 2015.